Search results
Results From The WOW.Com Content Network
Matiyasevich's theorem, also called the Matiyasevich–Robinson–Davis–Putnam or MRDP theorem, says: . Every computably enumerable set is Diophantine, and the converse.. A set S of integers is computably enumerable if there is an algorithm such that: For each integer input n, if n is a member of S, then the algorithm eventually halts; otherwise it runs forever.
Hilbert's eighth problem is one of David Hilbert's list of open mathematical problems posed in 1900. It concerns number theory, and in particular the Riemann hypothesis, [1] although it is also concerned with the Goldbach conjecture.
While this is not the best layout for r(6), similar arrangements of six, seven, eight, and nine disks around a central disk all having same radius result in the best layout strategies for r(7), r(8), r(9), and r(10), respectively. [2] The corresponding angles θ are written in the "Symmetry" column in the above table.
Problems 1, 2, 5, 6, [a] 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis), 13 and 16 [b] unresolved. Problems 4 and 23 are considered as too vague to ever be described as solved; the withdrawn 24 would also be in ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.
Then 1! = 1, 2! = 2, 3! = 6, and 4! = 24. However, we quickly get to extremely large numbers, even for relatively small n . For example, 100! ≈ 9.332 621 54 × 10 157 , a number so large that it cannot be displayed on most calculators, and vastly larger than the estimated number of fundamental particles in the observable universe.
In mathematics, Mahler's 3/2 problem concerns the existence of "Z-numbers". A Z-number is a real number x such that the fractional parts of are less than 1/2 for all positive integers n. Kurt Mahler conjectured in 1968 that there are no Z-numbers. More generally, for a real number α, define Ω(α) as