When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bond energy - Wikipedia

    en.wikipedia.org/wiki/Bond_energy

    The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,

  3. Bond-dissociation energy - Wikipedia

    en.wikipedia.org/wiki/Bond-dissociation_energy

    The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).

  4. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    Bond energy and bond-dissociation energy are measures of the binding energy between the atoms in a chemical bond. It is the energy required to disassemble a molecule into its constituent atoms. This energy appears as chemical energy, such as that released in chemical explosions, the burning of chemical fuel and biological processes. Bond ...

  5. Ionic bonding - Wikipedia

    en.wikipedia.org/wiki/Ionic_bonding

    Ionic bonds have high bond energy. Bond energy is the mean amount of energy required to break the bond in the gaseous state. Most ionic compounds exist in the form of a crystal structure, in which the ions occupy the corners of the crystal. Such a structure is called a crystal lattice.

  6. Bond order - Wikipedia

    en.wikipedia.org/wiki/Bond_order

    bond order = ⁠ number of bonding electrons - number of antibonding electrons / 2 ⁠ Generally, the higher the bond order, the stronger the bond. Bond orders of one-half may be stable, as shown by the stability of H + 2 (bond length 106 pm, bond energy 269 kJ/mol) and He + 2 (bond length 108 pm, bond energy 251 kJ/mol). [8]

  7. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    By the principle of minimum energy, there are a number of other state functions which may be defined which have the dimensions of energy and which are minimized according to the second law under certain conditions other than constant entropy. These are called thermodynamic potentials. For each such potential, the relevant fundamental equation ...

  8. Your guide to Proposition 4: California Climate bond - AOL

    www.aol.com/news/guide-proposition-4-california...

    What to know about California's Proposition 4, the proposed $10 billion climate bond that would pay for climate and environmental projects.

  9. Tight binding - Wikipedia

    en.wikipedia.org/wiki/Tight_binding

    The energy E i is the ionization energy corresponding to the chosen atomic orbital and U is the energy shift of the orbital as a result of the potential of neighboring atoms. The n ± 1 | H | n = − Δ {\displaystyle \langle n\pm 1|H|n\rangle =-\Delta } elements, which are the Slater and Koster interatomic matrix elements , are the bond ...