Search results
Results From The WOW.Com Content Network
If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = , where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted .
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre .
The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface). For the intrinsic order of magnitude of magnetic fields, see: Orders of magnitude (magnetic moment) .
In electromagnetics, the term magnetic field is used for two distinct but closely related vector fields denoted by the symbols B and H. In the International System of Units, the unit of B, magnetic flux density, is the tesla (in SI base units: kilogram per second squared per ampere), [5]: 21 which is equivalent to newton per meter
The weber may be defined in terms of Faraday's law, which relates a changing magnetic flux through a loop to the electric field around the loop. A change in flux of one weber per second will induce an electromotive force of one volt (produce an electric potential difference of one volt across two open-circuited terminals).
The magnetic flux density (magnetic field) having the unit Wb/m 2 is denoted by B, and magnetic flux is defined analogously: [13] [14] = with the same notation above. The quantity arises in Faraday's law of induction , where the magnetic flux is time-dependent either because the boundary is time-dependent or magnetic field is time-dependent.
where is the magnetic flux density, or magnetic flux per unit area at a given point in space. The simplest example of such a system is a single circular coil of conductive wire immersed in a magnetic field, in which case the flux linkage is simply the flux passing through the loop.