Ad
related to: explain variance in statistics
Search results
Results From The WOW.Com Content Network
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.
which is an unbiased estimator of the variance of the mean in terms of the observed sample variance and known quantities. If the autocorrelations are identically zero, this expression reduces to the well-known result for the variance of the mean for independent data. The effect of the expectation operator in these expressions is that the ...
Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences between groups. It uses F-test by comparing variance between groups and taking noise, or assumed normal distribution of group, into consideration by ...
In statistics, explained variation measures the proportion to which a mathematical model accounts for the variation of a given data set.Often, variation is quantified as variance; then, the more specific term explained variance can be used.
The larger the variance, the greater risk the security carries. Finding the square root of this variance will give the standard deviation of the investment tool in question. Financial time series are known to be non-stationary series, whereas the statistical calculations above, such as standard deviation, apply only to stationary series.
The sum of squared deviations is a key component in the calculation of variance, another measure of the spread or dispersion of a data set. Variance is calculated by averaging the squared deviations. Deviation is a fundamental concept in understanding the distribution and variability of data points in statistical analysis. [1]
In statistics, Bessel's correction is the use of n − 1 instead of n in the formula for the sample variance and sample standard deviation, [1] where n is the number of observations in a sample. This method corrects the bias in the estimation of the population variance.