Ads
related to: use rational exponents to simplify fractions answer worksheet
Search results
Results From The WOW.Com Content Network
If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is positive the equation has two real roots, and the continued fraction converges to the larger (in absolute value) of these. The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ...
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
[2] [3] Rational fractions are also known as rational expressions. A rational fraction () is called proper if < (), and improper otherwise. For example, the rational fraction is proper, and the rational fractions + + + and + + are improper. Any improper rational fraction can be expressed as the sum of a polynomial (possibly constant ...
In other words, a fraction a / b is irreducible if and only if a and b are coprime, that is, if a and b have a greatest common divisor of 1. In higher mathematics, "irreducible fraction" may also refer to rational fractions such that the numerator and the denominator are coprime polynomials. [2]
Generalization to fractions is by multiplying the numerators and denominators, respectively: = (). This gives the area of a rectangle A B {\displaystyle {\frac {A}{B}}} high and C D {\displaystyle {\frac {C}{D}}} wide, and is the same as the number of things in an array when the rational numbers happen to be whole numbers.
If the numerator and the denominator are polynomials, as in + , the algebraic fraction is called a rational fraction (or rational expression). An irrational fraction is one that is not rational, as, for example, one that contains the variable under a fractional exponent or root, as in x + 2 x 2 − 3 {\displaystyle {\frac {\sqrt {x+2 ...