Ad
related to: find two nontrivial functions calculator formula list for kids
Search results
Results From The WOW.Com Content Network
The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument. Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences.
Closed curve problem: find (explicit) necessary and sufficient conditions that determine when, given two periodic functions with the same period, the integral curve is closed. [52] The filling area conjecture, that a hemisphere has the minimum area among shortcut-free surfaces in Euclidean space whose boundary forms a closed curve of given ...
Srinivasa Ramanujan discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of n {\displaystyle n} ends in the digit 4 or 9, the number of partitions of n {\displaystyle n} will be divisible by 5.
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than Steffensen's method, when both algorithms succeed: The secant method achieves a factor of about (1.6) 2 ≈ 2.6 times as many digits for every two steps (two function ...
The Riemann hypothesis states that the real part of every nontrivial zero must be 1 / 2 . In other words, all known nontrivial zeros of the Riemann zeta are of the form z = 1 / 2 + yi where y is a real number. The following table contains the decimal expansion of Im(z) for the first few nontrivial zeros:
Despite the algebraic branch point, the function is well-defined as a multiple-valued function and, in an appropriate sense, is continuous at the origin. This is in contrast to transcendental and logarithmic branch points, that is, points at which a multiple-valued function has nontrivial monodromy and an essential singularity.
For every odd positive integer +, the following equation holds: [3] (+) = ()!() +where is the n-th Euler Number.This yields: =,() =,() =,() =For the values of the Dirichlet beta function at even positive integers no elementary closed form is known, and no method has yet been found for determining the arithmetic nature of even beta values (similarly to the Riemann zeta function at odd integers ...