When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Permutation matrix - Wikipedia

    en.wikipedia.org/wiki/Permutation_matrix

    Since any permutation matrix is normal and any normal matrix is diagonalizable over the complex numbers, [1]: 259 the algebraic and geometric multiplicities of an eigenvalue v are the same.) From group theory we know that any permutation may be written as a composition of transpositions .

  3. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    The fundamental fact about diagonalizable maps and matrices is expressed by the following: An matrix over a field is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to , which is the case if and only if there exists a basis of consisting of eigenvectors of .

  4. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    In the definition of similarity, if the matrix P can be chosen to be a permutation matrix then A and B are permutation-similar; if P can be chosen to be a unitary matrix then A and B are unitarily equivalent. The spectral theorem says that every normal matrix is unitarily equivalent to some diagonal matrix.

  5. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    Any circulant is a matrix polynomial (namely, the associated polynomial) in the cyclic permutation matrix: = + + + + = (), where is given by the companion matrix = []. The set of n × n {\displaystyle n\times n} circulant matrices forms an n {\displaystyle n} - dimensional vector space with respect to addition and scalar multiplication.

  6. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    Two diagonalizable matrices and commute (=) if they are simultaneously diagonalizable (that is, there exists an invertible matrix such that both and are diagonal). [ 4 ] : p. 64 The converse is also true; that is, if two diagonalizable matrices commute, they are simultaneously diagonalizable. [ 5 ]

  7. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    The trace of a permutation matrix is the number of fixed points of the corresponding permutation, because the diagonal term a ii is 1 if the i th point is fixed and 0 otherwise. The trace of a projection matrix is the dimension of the target space.

  8. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    Sets of representatives of matrix conjugacy classes for Jordan normal form or rational canonical forms in general do not constitute linear or affine subspaces in the ambient matrix spaces. Vladimir Arnold posed [ 16 ] a problem: Find a canonical form of matrices over a field for which the set of representatives of matrix conjugacy classes is a ...

  9. Generalized permutation matrix - Wikipedia

    en.wikipedia.org/wiki/Generalized_permutation_matrix

    In mathematics, a generalized permutation matrix (or monomial matrix) is a matrix with the same nonzero pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column. Unlike a permutation matrix, where the nonzero entry must be 1, in a generalized permutation matrix the nonzero entry can be any nonzero value.