Ad
related to: 8 levels of classification acronym for statistics and data warehouse
Search results
Results From The WOW.Com Content Network
A standard representation of the pyramid form of DIKW models, from 2007 and earlier [1] [2]. The DIKW pyramid, also known variously as the knowledge pyramid, knowledge hierarchy, information hierarchy, [1]: 163 DIKW hierarchy, wisdom hierarchy, data pyramid, and information pyramid, [citation needed] sometimes also stylized as a chain, [3]: 15 [4] refer to models of possible structural and ...
Data classification can be viewed as a multitude of labels that are used to define the type of data, especially on confidentiality and integrity issues. [1] Data classification is typically a manual process; however, there are tools that can help gather information about the data. [2] Data sensitivity levels are often proposed to be considered. [2]
ADCCP—Advanced Data Communications Control Procedures; ... DW—Data Warehouse; E ... TLA—Three-Letter Acronym; TLD—Top-Level Domain;
Data Warehouse and Data mart overview, with Data Marts shown in the top right. In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is a core component of business intelligence. [1] Data warehouses are central repositories of data integrated from ...
Early work on statistical classification was undertaken by Fisher, [1] [2] in the context of two-group problems, leading to Fisher's linear discriminant function as the rule for assigning a group to a new observation. [3] This early work assumed that data-values within each of the two groups had a multivariate normal distribution.
However, data has staged a comeback with the popularisation of the term big data, which refers to the collection and analyses of massive sets of data. While big data is a recent phenomenon, the requirement for data to aid decision-making traces back to the early 1970s with the emergence of decision support systems (DSS).
The first step in doing a data classification is to cluster the data set used for category training, to create the wanted number of categories. An algorithm, called the classifier, is then used on the categories, creating a descriptive model for each. These models can then be used to categorize new items in the created classification system. [2]
An operational data store (ODS) is used for operational reporting and as a source of data for the enterprise data warehouse (EDW). It is a complementary element to an EDW in a decision support environment, and is used for operational reporting, controls, and decision making, as opposed to the EDW, which is used for tactical and strategic decision support.