When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    An iterative method with a given iteration matrix is called convergent if the following holds lim k → ∞ C k = 0. {\displaystyle \lim _{k\rightarrow \infty }C^{k}=0.} An important theorem states that for a given iterative method and its iteration matrix C {\displaystyle C} it is convergent if and only if its spectral radius ρ ( C ...

  3. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in.

  4. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix. The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya , working independently.

  5. Successive over-relaxation - Wikipedia

    en.wikipedia.org/wiki/Successive_over-relaxation

    Spectral radius () of the iteration matrix for the SOR method .The plot shows the dependence on the spectral radius of the Jacobi iteration matrix := ().. The choice of relaxation factor ω is not necessarily easy, and depends upon the properties of the coefficient matrix.

  6. Jacobi method for complex Hermitian matrices - Wikipedia

    en.wikipedia.org/wiki/Jacobi_Method_for_Complex...

    In mathematics, the Jacobi method for complex Hermitian matrices is a generalization of the Jacobi iteration method. The Jacobi iteration method is also explained in "Introduction to Linear Algebra" by Strang (1993).

  7. Lanczos algorithm - Wikipedia

    en.wikipedia.org/wiki/Lanczos_algorithm

    The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...

  8. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    The algorithm is also known as the Von Mises iteration. [1] Power iteration is a very simple algorithm, but it may converge slowly. The most time-consuming operation of the algorithm is the multiplication of matrix by a vector, so it is effective for a very large sparse matrix with appropriate

  9. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS can be used for ℓ 1 minimization and smoothed ℓ p minimization, p < 1, in compressed sensing problems. It has been proved that the algorithm has a linear rate of convergence for ℓ 1 norm and superlinear for ℓ t with t < 1, under the restricted isometry property, which is generally a sufficient condition for sparse solutions.