When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent vector - Wikipedia

    en.wikipedia.org/wiki/Tangent_vector

    In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...

  3. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    The tangent vector's magnitude ‖ ′ ‖ is the speed at the time t 0. The first Frenet vector e 1 (t) is the unit tangent vector in the same direction, defined at each regular point of γ: = ′ ‖ ′ ‖.

  4. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    These equations express that the tangent line, which is parallel to , is perpendicular to the radii, and that the tangent points lie on their respective circles. These are four quadratic equations in two two-dimensional vector variables, and in general position will have four pairs of solutions.

  5. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  6. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    The tangent plane to a surface at a given point p is defined in an analogous way to the tangent line in the case of curves. It is the best approximation of the surface by a plane at p , and can be obtained as the limiting position of the planes passing through 3 distinct points on the surface close to p as these points converge to p .

  7. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    Developing the equation for , and grouping the terms in and , we obtain ˙ + ˙ = ¨ + ¨ = ˙ + ˙ Denoting =, the first equation means that is orthogonal to the unit tangent vector at : = The second relation means that = where = = ˙ + ˙ [¨ ¨] is the curvature vector. In plane geometry, is orthogonal to because = = = = Therefore = and the ...

  8. Tangent space - Wikipedia

    en.wikipedia.org/wiki/Tangent_space

    A vector field attaches to every point of the manifold a vector from the tangent space at that point, in a smooth manner. Such a vector field serves to define a generalized ordinary differential equation on a manifold: A solution to such a differential equation is a differentiable curve on the manifold whose derivative at any point is equal to ...

  9. Tangential and normal components - Wikipedia

    en.wikipedia.org/wiki/Tangential_and_normal...

    Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.