When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hilbert projection theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert_projection_theorem

    The Hilbert projection theorem guarantees that this unique minimum point exists whenever is a non-empty closed and convex subset of a Hilbert space. However, such a minimum point can also exist in non-convex or non-closed subsets as well; for instance, just as long is C {\displaystyle C} is non-empty, if x ∈ C {\displaystyle x\in C} then min ...

  3. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    In the Hilbert space view, this is the orthogonal projection of onto the kernel of the expectation operator, which a continuous linear functional on the Hilbert space (in fact, the inner product with the constant random variable 1), and so this kernel is a closed subspace.

  4. Singular integral operators on closed curves - Wikipedia

    en.wikipedia.org/wiki/Singular_integral...

    In the special case of Fourier series for the unit circle, the operators become the classical Cauchy transform, the orthogonal projection onto Hardy space, and the Hilbert transform a real orthogonal linear complex structure. In general the Cauchy transform is a non-self-adjoint idempotent and the Hilbert transform a non-orthogonal complex ...

  5. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .

  6. Projection-valued measure - Wikipedia

    en.wikipedia.org/wiki/Projection-valued_measure

    A projection-valued measure π is homogeneous of multiplicity n if and only if the multiplicity function has constant value n. Clearly, Theorem. Any projection-valued measure π taking values in the projections of a separable Hilbert space is an orthogonal direct sum of homogeneous projection-valued measures:

  7. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    If a normal operator T on a finite-dimensional real [clarification needed] or complex Hilbert space (inner product space) H stabilizes a subspace V, then it also stabilizes its orthogonal complement V ⊥. (This statement is trivial in the case where T is self-adjoint.) Proof. Let P V be the orthogonal projection onto V.

  8. Von Neumann algebra - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_algebra

    Operators E in a von Neumann algebra for which E = EE = E* are called projections; they are exactly the operators which give an orthogonal projection of H onto some closed subspace. A subspace of the Hilbert space H is said to belong to the von Neumann algebra M if it is the image of some projection in M.

  9. Orthogonal complement - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_complement

    Hilbert projection theorem – On closed convex subsets in Hilbert space Orthogonal projection – Idempotent linear transformation from a vector space to itself Pages displaying short descriptions of redirect targets