When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    An orthogonal projection is a projection for which the range ... This formula can be generalized to orthogonal projections on a subspace of arbitrary dimension.

  3. Grassmannian - Wikipedia

    en.wikipedia.org/wiki/Grassmannian

    Conversely, every projection operator of rank defines a subspace := as its image. Since the rank of an orthogonal projection operator equals its trace , we can identify the Grassmann manifold G r ( k , V ) {\displaystyle \mathbf {Gr} (k,V)} with the set of rank k {\displaystyle k} orthogonal projection operators P {\displaystyle P} :

  4. Orthogonal complement - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_complement

    In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace of a vector space equipped with a bilinear form is the set of all vectors in that are orthogonal to every vector in .

  5. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    In the Hilbert space view, this is the orthogonal projection of onto the kernel of the expectation operator, which a continuous linear functional on the Hilbert space (in fact, the inner product with the constant random variable 1), and so this kernel is a closed subspace.

  6. Hilbert projection theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert_projection_theorem

    Hilbert projection theorem — For every vector in a Hilbert space and every nonempty closed convex , there exists a unique vector for which ‖ ‖ is equal to := ‖ ‖.. If the closed subset is also a vector subspace of then this minimizer is the unique element in such that is orthogonal to .

  7. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    The Gram–Schmidt process takes a finite, linearly independent set of vectors = {, …,} for k ≤ n and generates an orthogonal set ′ = {, …,} that spans the same -dimensional subspace of as . The method is named after Jørgen Pedersen Gram and Erhard Schmidt , but Pierre-Simon Laplace had been familiar with it before Gram and Schmidt. [ 1 ]

  8. Matching pursuit - Wikipedia

    en.wikipedia.org/wiki/Matching_pursuit

    A popular extension of Matching Pursuit (MP) is its orthogonal version: Orthogonal Matching Pursuit [14] [15] (OMP). The main difference from MP is that after every step, all the coefficients extracted so far are updated, by computing the orthogonal projection of the signal onto the subspace spanned by the set of atoms selected so far. This can ...

  9. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .