When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degeneracy (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(graph_theory)

    In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has at least one vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate.

  3. Core (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Core_(graph_theory)

    Any complete graph is a core. A cycle of odd length is a core. A graph is a core if and only if the core of is equal to . Every two cycles of even length, and more generally every two bipartite graphs are hom-equivalent. The core of each of these graphs is the two-vertex complete graph K 2.

  4. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.

  5. List of graph theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_graph_theory_topics

    Bivariegated graph; Cage (graph theory) Cayley graph; Circle graph; Clique graph; Cograph; Common graph; Complement of a graph; Complete graph; Cubic graph; Cycle graph; De Bruijn graph; Dense graph; Dipole graph; Directed acyclic graph; Directed graph; Distance regular graph; Distance-transitive graph; Edge-transitive graph; Interval graph ...

  6. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    The converse graph is a synonym for the transpose graph; see transpose. core 1. A k-core is the induced subgraph formed by removing all vertices of degree less than k, and all vertices whose degree becomes less than k after earlier removals. See degeneracy. 2. A core is a graph G such that every graph homomorphism from G to itself is an ...

  7. Regular graph - Wikipedia

    en.wikipedia.org/wiki/Regular_graph

    From the handshaking lemma, a k-regular graph with odd k has an even number of vertices. A theorem by Nash-Williams says that every k ‑regular graph on 2k + 1 vertices has a Hamiltonian cycle. Let A be the adjacency matrix of a graph. Then the graph is regular if and only if = (, …,) is an eigenvector of A. [2]

  8. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    A complete graph with n nodes represents the edges of an (n – 1)-simplex. Geometrically K 3 forms the edge set of a triangle, K 4 a tetrahedron, etc. The Császár polyhedron, a nonconvex polyhedron with the topology of a torus, has the complete graph K 7 as its skeleton. [15] Every neighborly polytope in four or more dimensions also has a ...

  9. Graph factorization - Wikipedia

    en.wikipedia.org/wiki/Graph_factorization

    A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors.