When.com Web Search

  1. Ads

    related to: unit disk vs riemann second equation practice exercises examples worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Unit disk - Wikipedia

    en.wikipedia.org/wiki/Unit_disk

    is an example of a real analytic and bijective function from the open unit disk to the plane; its inverse function is also analytic. Considered as a real 2-dimensional analytic manifold, the open unit disk is therefore isomorphic to the whole plane. In particular, the open unit disk is homeomorphic to the whole plane.

  3. Uniformization theorem - Wikipedia

    en.wikipedia.org/wiki/Uniformization_theorem

    Since every Riemann surface has a universal cover which is a simply connected Riemann surface, the uniformization theorem leads to a classification of Riemann surfaces into three types: those that have the Riemann sphere as universal cover ("elliptic"), those with the plane as universal cover ("parabolic") and those with the unit disk as ...

  4. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    The Riemann curvature tensor measures precisely the extent to which parallel transporting vectors around a small rectangle is not the identity map. [28] The Riemann curvature tensor is 0 at every point if and only if the manifold is locally isometric to Euclidean space. [29] Fix a connection on .

  5. Schwarz lemma - Wikipedia

    en.wikipedia.org/wiki/Schwarz_lemma

    This is an easy consequence of the Schwarz–Pick theorem mentioned above: One just needs to remember that the Cayley transform = / (+) maps the upper half-plane conformally onto the unit disc . Then, the map W ∘ f ∘ W − 1 {\displaystyle W\circ f\circ W^{-1}} is a holomorphic map from D {\displaystyle \mathbf {D} } onto D {\displaystyle ...

  6. Riemann mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_mapping_theorem

    The Riemann mapping theorem can be generalized to the context of Riemann surfaces: If is a non-empty simply-connected open subset of a Riemann surface, then is biholomorphic to one of the following: the Riemann sphere, the complex plane, or the unit disk.

  7. Schwarz–Christoffel mapping - Wikipedia

    en.wikipedia.org/wiki/Schwarz–Christoffel_mapping

    In complex analysis, a Schwarz–Christoffel mapping is a conformal map of the upper half-plane or the complex unit disk onto the interior of a simple polygon.Such a map is guaranteed to exist by the Riemann mapping theorem (stated by Bernhard Riemann in 1851); the Schwarz–Christoffel formula provides an explicit construction.

  8. Geometric function theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_function_theory

    A Riemann surface, first studied by and named after Bernhard Riemann, is a one-dimensional complex manifold. Riemann surfaces can be thought of as deformed versions of the complex plane : locally near every point they look like patches of the complex plane, but the global topology can be quite different.

  9. Quasiconformal mapping - Wikipedia

    en.wikipedia.org/wiki/Quasiconformal_mapping

    Then there is a quasiconformal homeomorphism f from D to the unit disk which is in the Sobolev space W 1,2 (D) and satisfies the corresponding Beltrami equation in the distributional sense. As with Riemann's mapping theorem, this f is unique up to 3 real parameters.