Search results
Results From The WOW.Com Content Network
TK Solver's core technologies are a declarative programming language, algebraic equation solver, [1] an iterative equation solver, and a structured, object-based interface, using a command structure. [ 1 ] [ 7 ] The interface comprises nine classes of objects that can be shared between and merged into other TK files:
Microsoft Math contains features that are designed to assist in solving mathematics, science, and tech-related problems, as well as to educate the user. The application features such tools as a graphing calculator and a unit converter. It also includes a triangle solver and an equation solver that provides step-by-step solutions to each problem.
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2(y + 1) – 1, a true statement. It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x – 1.
Declares F as a variable for solver 03 MVAR C: Declares C as a variable for solver 04 RCL F: Recall F 05 9: 06 5: 07 ÷: 08 RCL C: Recall C 09 ×: 10 -11 3 2: 12 -END or RTN: Returns control (and result in X) to either the user or to a calling program.
Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits over F 16, where it has the two roots ab and ab + a, where b is a root of x 2 + x + a in F 16. This is a special case of Artin–Schreier theory.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set. For linear equations, logical independence is the same as linear independence. The equations x − 2y = −1, 3x + 5y = 8, and 4x + 3y = 7 are linearly dependent. For example ...