When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dirichlet's approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_approximation...

    This shows that any irrational number has irrationality measure at least 2. The Thue–Siegel–Roth theorem says that, for algebraic irrational numbers, the exponent of 2 in the corollary to Dirichlet’s approximation theorem is the best we can do: such numbers cannot be approximated by any exponent greater than 2.

  3. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    In fact, all square roots of natural numbers, other than of perfect squares, are irrational. [2] Like all real numbers, irrational numbers can be expressed in positional notation, notably as a decimal number. In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence.

  4. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  5. Theodorus of Cyrene - Wikipedia

    en.wikipedia.org/wiki/Theodorus_of_Cyrene

    In modern terms, the theorem is that a real number with an infinite continued fraction expansion is irrational. Irrational square roots have periodic expansions. The period of the square root of 19 has length 6, which is greater than the period of the square root of any smaller number.

  6. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    Hence, the set of real numbers consists of non-overlapping sets of rational, algebraic irrational, and transcendental real numbers. [3] For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0. The golden ratio (denoted or ) is another irrational ...

  7. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    If n is an integer greater than two, a n-th root of is a number such that =; it is denoted . Given any polynomial p , a root of p is a number y such that p ( y ) = 0 . For example, the n th roots of x are the roots of the polynomial (in y ) y n − x . {\displaystyle y^{n}-x.}

  8. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    A more general proof shows that the mth root of an integer N is irrational, unless N is the mth power of an integer n. [7] That is, it is impossible to express the mth root of an integer N as the ratio a ⁄ b of two integers a and b, that share no common prime factor, except in cases in which b = 1.

  9. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number. Depending on the construction of the real numbers used, completeness may take the form of an axiom (the completeness axiom ), or may be a theorem proven from the ...