When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Image (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Image_(mathematics)

    The image of the function is the set of all output values it may produce, that is, the image of . The preimage of f {\displaystyle f} , that is, the preimage of Y {\displaystyle Y} under f {\displaystyle f} , always equals X {\displaystyle X} (the domain of f {\displaystyle f} ); therefore, the former notion is rarely used.

  3. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    Continuous functions are Borel functions but not all Borel functions are continuous. However, a measurable function is nearly a continuous function; see Luzin's theorem . If a Borel function happens to be a section of a map Y → π X , {\displaystyle Y\xrightarrow {~\pi ~} X,} it is called a Borel section .

  4. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    A function : is monotone in this topological sense if and only if it is non-increasing or non-decreasing, which is the usual meaning of "monotone function" in real analysis. A function between topological spaces is (sometimes) called a proper map if every fiber is a compact subspace of its domain. However, many authors use other non-equivalent ...

  5. Pullback - Wikipedia

    en.wikipedia.org/wiki/Pullback

    The pullback bundle is an example that bridges the notion of a pullback as precomposition, and the notion of a pullback as a Cartesian square. In that example, the base space of a fiber bundle is pulled back, in the sense of precomposition, above. The fibers then travel along with the points in the base space at which they are anchored: the ...

  6. Range of a function - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_function

    is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.

  7. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : X → Y, the codomain Y is the image of the function ...

  8. Injective function - Wikipedia

    en.wikipedia.org/wiki/Injective_function

    In mathematics, an injective function (also known as injection, or one-to-one function [1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x 1 ≠ x 2 implies f(x 1) ≠ f(x 2) (equivalently by contraposition, f(x 1) = f(x 2) implies x 1 = x 2).

  9. Geometric function theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_function_theory

    A rectangular grid (top) and its image under a conformal map f (bottom). It is seen that f maps pairs of lines intersecting at 90° to pairs of curves still intersecting at 90°. A conformal map is a function which preserves angles locally. In the most common case the function has a domain and range in the complex plane. More formally, a map,