Search results
Results From The WOW.Com Content Network
This narrower definition has the disadvantage that it rules out finite sequences and bi-infinite sequences, both of which are usually called sequences in standard mathematical practice. Another disadvantage is that, if one removes the first terms of a sequence, one needs reindexing the remainder terms for fitting this definition.
Since the topological vector space definition of Cauchy sequence requires only that there be a continuous "subtraction" operation, it can just as well be stated in the context of a topological group: A sequence () in a topological group is a Cauchy sequence if for every open neighbourhood of the identity in there exists some number such that ...
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
A system sequence diagram should be done for the main success scenario of the use case, and frequent or complex alternative scenarios. There are two kinds of sequence diagrams: Sequence Diagram (SD): A regular version of sequence diagram describes how the system operates, and every object within a system is described specifically.
The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other algebraic structures. For example, one could have an exact sequence of vector spaces and linear maps, or of modules and module homomorphisms.
In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}
For example, the sequence ,, is a subsequence of ,,,,, obtained after removal of elements ,, and . The relation of one sequence being the subsequence of another is a preorder . Subsequences can contain consecutive elements which were not consecutive in the original sequence.