Search results
Results From The WOW.Com Content Network
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!
In case G is a matrix Lie group, the exponential map reduces to the matrix exponential. The exponential map, denoted exp:g → G, is analytic and has as such a derivative d / dt exp(X(t)):Tg → TG, where X(t) is a C 1 path in the Lie algebra, and a closely related differential dexp:Tg → TG. [2]
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): () ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.
The exponential function () = is the unique differentiable function of a complex variable for which the derivative equals the function = and () = Power series definition [ edit ]
This results from the fact that the derivative of the exponential function e rx is a multiple of itself. Therefore, y′ = re rx, y″ = r 2 e rx, and y (n) = r n e rx are all multiples. This suggests that certain values of r will allow multiples of e rx to sum to zero, thus solving the homogeneous differential equation. [5]
In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number.Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.