Search results
Results From The WOW.Com Content Network
The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by φ ∈ [ 0 , 2 π ] {\displaystyle \varphi \in [0,2\pi ]} : it is the angle between the x -axis and the projection of the radial vector onto the xy -plane.
Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...
the point's direction from the pole relative to the direction of the polar axis, a ray drawn from the pole. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. [1] The pole is analogous to the origin in a Cartesian coordinate system.
Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).
In polar form, if and are real numbers then the conjugate of is . This can be shown using Euler's formula . The product of a complex number and its conjugate is a real number: a 2 + b 2 {\displaystyle a^{2}+b^{2}} (or r 2 {\displaystyle r^{2}} in polar coordinates ).
In this polar decomposition, the unit circle has been replaced by the line x = 1, the polar angle by the slope y/x, and the radius x is negative in the left half-plane. If x 2 ≠ y 2, then the unit hyperbola x 2 − y 2 = 1 and its conjugate x 2 − y 2 = −1 can be used to form a polar decomposition based on the branch of the unit hyperbola ...
Cylindrical vectors use polar coordinates, where the second distance component is concatenated as a third component to form ordered triplets (again, a subset of ordered set notation) and matrices. The angle may be prefixed with the angle symbol ( ∠ {\displaystyle \angle } ); the distance-angle-distance combination distinguishes cylindrical ...
A complex number can also be defined by its geometric polar coordinates: the radius is called the absolute value of the complex number, while the angle from the positive real axis is called the argument of the complex number. The complex numbers of absolute value one form the unit circle.