When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The inspiration for adopting the word entropy in information theory came from the close resemblance between Shannon's formula and very similar known formulae from statistical mechanics. In statistical thermodynamics the most general formula for the thermodynamic entropy S of a thermodynamic system is the Gibbs entropy

  3. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    The von Neumann entropy formula is an extension of the Gibbs entropy formula to the quantum mechanical case. It has been shown [ 1 ] that the Gibbs Entropy is equal to the classical "heat engine" entropy characterized by d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\!} , and the generalized Boltzmann distribution is a sufficient and ...

  4. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Thus the definitions of entropy in statistical mechanics (The Gibbs entropy formula = ⁡) and in classical thermodynamics (=, and the fundamental thermodynamic relation) are equivalent for microcanonical ensemble, and statistical ensembles describing a thermodynamic system in equilibrium with a reservoir, such as the canonical ensemble, grand ...

  5. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    The Shannon entropy (in nats) is: = = ⁡ = ⁡ and if entropy is measured in units of per nat, then the entropy is given by: = ⁡ which is the Boltzmann entropy formula, where is the Boltzmann constant, which may be interpreted as the thermodynamic entropy per nat.

  6. Boltzmann's entropy formula - Wikipedia

    en.wikipedia.org/wiki/Boltzmann's_entropy_formula

    Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:

  7. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The entropy is thus a measure of the uncertainty about exactly which quantum state the system is in, given that we know its energy to be in some interval of size . Deriving the fundamental thermodynamic relation from first principles thus amounts to proving that the above definition of entropy implies that for reversible processes we have:

  8. Principle of maximum entropy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_maximum_entropy

    The principle of maximum entropy states that the probability distribution which best represents the current state of knowledge about a system is the one with largest entropy, in the context of precisely stated prior data (such as a proposition that expresses testable information).

  9. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    The change in entropy in the entropy of mixing example may be viewed as an example of a non-extensive entropy resulting from the distinguishability of the two types of particles being mixed. Quantum particles are either bosons (following Bose–Einstein statistics ) or fermions (subject to the Pauli exclusion principle , following instead Fermi ...