Ad
related to: helium burning process diagram pdf free print sheets
Search results
Results From The WOW.Com Content Network
The other class is a cycle of reactions called the triple-alpha process, which consumes only helium, and produces carbon. [1] The alpha process most commonly occurs in massive stars and during supernovae. Both processes are preceded by hydrogen fusion, which produces the helium that fuels both the triple-alpha process and the alpha ladder ...
As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy: 12 6 C + 4 2 He → 16 8 O + γ (+7.162 MeV) Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7 × 10 −22 s.
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
The majority of these occur within stars, and the chain of those nuclear fusion processes are known as hydrogen burning (via the proton–proton chain or the CNO cycle), helium burning, carbon burning, neon burning, oxygen burning and silicon burning. These processes are able to create elements up to and including iron and nickel.
The CNO-I process was independently proposed by Carl von Weizsäcker [5] [6] and Hans Bethe [7] [8] in the late 1930s. The first reports of the experimental detection of the neutrinos produced by the CNO cycle in the Sun were published in 2020 by the BOREXINO collaboration. This was also the first experimental confirmation that the Sun had a ...
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) and by hydrogen fusion (via the CNO cycle) in a shell surrounding the core.
For stars with a degenerate helium core, there is a limit to this growth in size and luminosity, known as the tip of the red-giant branch, where the core reaches sufficient temperature to begin fusion. All stars that reach this point have an identical helium core mass of almost 0.5 M ☉, and very similar stellar luminosity and temperature ...