Search results
Results From The WOW.Com Content Network
The most prominent example of the classical two-body problem is the gravitational case (see also Kepler problem), arising in astronomy for predicting the orbits (or escapes from orbit) of objects such as satellites, planets, and stars. A two-point-particle model of such a system nearly always describes its behavior well enough to provide useful ...
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.
However, the gravitational energy between the two bodies is exchanged via dilatons rather than gravitons which require three-space in which to propagate. The post-Newtonian expansion is a calculational method that provides a series of ever more accurate solutions to a given problem. [12]
The gravitational potential may be "softened" to remove the singularity at small distances: [21] = < ‖ ‖ + Second, in general for n > 2, the n-body problem is chaotic, [43] which means that even small errors in integration may grow exponentially in time. Third, a simulation may be over large stretches of model time (e.g. millions of years ...
The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg. Compared with the potential energy at the surface, which is −62.6 MJ/kg., the extra potential energy is 3.4 MJ/kg, and the total extra energy is 33.0 MJ/kg.
A quantum-mechanical analogue of the gravitational three-body problem in classical mechanics is the helium atom, in which a helium nucleus and two electrons interact according to the inverse-square Coulomb interaction. Like the gravitational three-body problem, the helium atom cannot be solved exactly. [41]
In the case of the gravitational potential energy (| |) = | |, we find that the position of the first body with respect to the second is governed by the same differential equation as the position of a body with the reduced mass orbiting a body with a mass (M) equal to the one particular sum equal to the sum of these two masses , because ...