When.com Web Search

  1. Ad

    related to: what is a primitive number of terms in statistics calculator 1 2 3 100 cong thuc

Search results

  1. Results From The WOW.Com Content Network
  2. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...

  3. Permutable prime - Wikipedia

    en.wikipedia.org/wiki/Permutable_prime

    All permutable primes of two or more digits are composed from the digits 1, 3, 7, 9, because no prime number except 2 is even, and no prime number besides 5 is divisible by 5. It is proven [ 4 ] that no permutable prime exists which contains three different of the four digits 1, 3, 7, 9, as well as that there exists no permutable prime composed ...

  4. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    The number 3 is a primitive root modulo 7 [5] because = = = = = = = = = = = = (). Here we see that the period of 3 k modulo 7 is 6. The remainders in the period, which are 3, 2, 6, 4, 5, 1, form a rearrangement of all nonzero remainders modulo 7, implying that 3 is indeed a primitive root modulo 7.

  5. Artin's conjecture on primitive roots - Wikipedia

    en.wikipedia.org/wiki/Artin's_conjecture_on...

    Let a be an integer that is not a square number and not −1. Write a = a 0 b 2 with a 0 square-free. Denote by S(a) the set of prime numbers p such that a is a primitive root modulo p. Then the conjecture states S(a) has a positive asymptotic density inside the set of primes. In particular, S(a) is infinite.

  6. Carmichael function - Wikipedia

    en.wikipedia.org/wiki/Carmichael_function

    The Carmichael lambda function of a prime power can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case λ of the product is the least common multiple of the λ of the prime power factors.

  7. Primitive abundant number - Wikipedia

    en.wikipedia.org/wiki/Primitive_abundant_number

    [1] [2] For example, 20 is a primitive abundant number because: The sum of its proper divisors is 1 + 2 + 4 + 5 + 10 = 22, so 20 is an abundant number. The sums of the proper divisors of 1, 2, 4, 5 and 10 are 0, 1, 3, 1 and 8 respectively, so each of these numbers is a deficient number. The first few primitive abundant numbers are:

  8. Perrin number - Wikipedia

    en.wikipedia.org/wiki/Perrin_number

    u n = 3u n−1 − 2u n−2 with initial values u 0 = −1, u 1 = 0. [11] I have found another recurrence sequence that seems to possess the same property; it is the one whose general term is v n = v n−2 + v n−3 with initial values v 0 = 3, v 1 = 0, v 2 = 2.

  9. Fermat pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Fermat_pseudoprime

    For example, 1093 2 = 1194649 is a Fermat pseudoprime to base 2, and 11 2 = 121 is a Fermat pseudoprime to base 3. The number of the values of b for n are (For n prime, the number of the values of b must be n − 1, since all b satisfy the Fermat little theorem )