Search results
Results From The WOW.Com Content Network
SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words. There are also truncated versions of each standard, known as SHA-224, SHA-384, SHA-512/224 and SHA-512/256. These were also designed by the NSA.
SHA-0: 1993 NSA: SHA-0: SHA-1: 1995 SHA-0: Specification: SHA-256 SHA-384 SHA-512: 2002 SHA-224: 2004 SHA-3 (Keccak) 2008 Guido Bertoni Joan Daemen Michaël Peeters Gilles Van Assche: RadioGatún: Website Specification: Streebog: 2012 FSB, InfoTeCS JSC RFC 6986: Tiger: 1995 Ross Anderson Eli Biham: Website Specification: Whirlpool: 2004 Vincent ...
SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. [3] [4] They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.
SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64. The output size in bits is given by the extension to the "SHA" name, so SHA-224 has an output size of 224 bits (28 bytes); SHA-256, 32 bytes; SHA-384, 48 ...
For example, SHA-256 operates on 512-bit blocks. The size of the output of HMAC is the same as that of the underlying hash function (e.g., 256 and 512 bits in the case of SHA-256 and SHA3-512, respectively), although it can be truncated if desired. HMAC does not encrypt the message.
SHA-1 SHA-2 SHA-3 RIPEMD-160 Tiger Whirlpool BLAKE2 GOST R 34.11-94 [45] (aka GOST 34.311-95) GOST R 34.11-2012 (Stribog) [46] SM3; Botan: Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Bouncy Castle: Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes BSAFE Crypto-J Yes Yes Yes Yes Yes No No No No No No cryptlib: Yes Yes Yes Yes Yes No Yes No No No No ...
For example, the pad could be derived from the total length of the message. This kind of padding scheme is commonly applied to hash algorithms that use the Merkle–Damgård construction such as MD-5, SHA-1, and SHA-2 family such as SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256 [4]
SHA-3 (Secure Hash Algorithm 3) is the latest [4] member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015. [5] [6] [7] Although part of the same series of standards, SHA-3 is internally different from the MD5-like structure of SHA-1 and SHA-2.