Search results
Results From The WOW.Com Content Network
Then | | + + + + + | | so | | + + + + + | | This shows that the sum of the four integrals (in the middle) is finite if and only if the integral of the absolute value is finite, and the function is Lebesgue integrable only if all the four integrals are finite. So having a finite integral of the absolute value is equivalent to the conditions for ...
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral. The term numerical quadrature (often abbreviated to quadrature ) is more or less a synonym for "numerical integration", especially as applied to one-dimensional integrals.
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
These reduction formulas can be used for integrands having integer and/or fractional exponents. Special cases of these reductions formulas can be used for integrands of the form ( a + b x n + c x 2 n ) p {\displaystyle \left(a+b\,x^{n}+c\,x^{2n}\right)^{p}} when b 2 − 4 a c = 0 {\displaystyle b^{2}-4\,a\,c=0} by setting m to 0.
Note the use of the absolute value in the indefinite integral; this is to provide a unified form for the integral, and means that the integral of this odd function is an even function, though the logarithm is only defined for positive inputs, and in fact, different constant values of C can be chosen on either side of 0, since these do not ...
An equivalent definition is to say that the square of the function itself (rather than of its absolute value) is Lebesgue integrable.For this to be true, the integrals of the positive and negative portions of the real part must both be finite, as well as those for the imaginary part.
While the Riemann integral considers the area under a curve as made out of vertical rectangles, the Lebesgue definition considers horizontal slabs that are not necessarily just rectangles, and so it is more flexible. For this reason, the Lebesgue definition makes it possible to calculate integrals for a broader class of functions.