When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    However, to distinguish acceleration relative to free fall from simple acceleration (rate of change of velocity), the unit g is often used. One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n ), defined as 9.806 65 metres per second squared , [ 5 ] or equivalently 9.806 65 newtons of ...

  3. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    It is a vector oriented toward the field source, of magnitude measured in acceleration units. The gravitational acceleration vector depends only on how massive the field source is and on the distance 'r' to the sample mass . It does not depend on the magnitude of the small sample mass. This model represents the "far-field" gravitational ...

  5. Peak ground acceleration - Wikipedia

    en.wikipedia.org/wiki/Peak_ground_acceleration

    Peak ground acceleration can be expressed in fractions of g (the standard acceleration due to Earth's gravity, equivalent to g-force) as either a decimal or percentage; in m/s 2 (1 g = 9.81 m/s 2); [7] or in multiples of Gal, where 1 Gal is equal to 0.01 m/s 2 (1 g = 981 Gal).

  6. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...

  7. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Change of acceleration per unit time: the third time derivative of position m/s 3: L T −3: vector Jounce (or snap) s →: Change of jerk per unit time: the fourth time derivative of position m/s 4: L T −4: vector Magnetic field strength: H: Strength of a magnetic field A/m L −1 I: vector field Magnetic flux density: B: Measure for the ...

  8. Orders of magnitude (acceleration) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    5.2 g: Luge, maximum expected at the Whistler Sliding Centre [citation needed] lab 49 – 59 m/s 2: 5 – 6 g: Formula One car, peak lateral in turns [5] inertial 59 m/s 2: 6 g: Parachutist peak during normal opening of parachute [6] inertial +69 / -49 m/s 2 +7 / -5 g: Standard, full aerobatics certified glider [citation needed] inertial 70.6 m ...

  9. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2. The value of the g n is defined as approximately equal to the acceleration due to gravity at the Earth's surface, although the actual acceleration varies slightly ...