When.com Web Search

  1. Ad

    related to: point set topology vs algebraic topology

Search results

  1. Results From The WOW.Com Content Network
  2. General topology - Wikipedia

    en.wikipedia.org/wiki/General_topology

    In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology , geometric topology , and algebraic topology .

  3. Topology - Wikipedia

    en.wikipedia.org/wiki/Topology

    General topology is the branch of topology dealing with the basic set-theoretic definitions and constructions used in topology. [11] [12] It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.

  4. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .

  5. Comparison of topologies - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_topologies

    The lattice of topologies on a set is a complemented lattice; that is, given a topology on there exists a topology ′ on such that the intersection ′ is the trivial topology and the topology generated by the union ′ is the discrete topology. [3] [4] If the set has at least three elements, the lattice of topologies on is not modular, [5 ...

  6. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...

  7. List of topologies - Wikipedia

    en.wikipedia.org/wiki/List_of_topologies

    The following topologies are a known source of counterexamples for point-set topology. Alexandroff plank; Appert topology − A Hausdorff, perfectly normal (T 6), zero-dimensional space that is countable, but neither first countable, locally compact, nor countably compact. Arens square

  8. Set-theoretic topology - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_topology

    Cardinal functions are widely used in topology as a tool for describing various topological properties. [4] [5] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [6] prefer to define the cardinal functions listed below so that they never take on finite cardinal numbers as values; this requires modifying some of the definitions ...

  9. Pointed space - Wikipedia

    en.wikipedia.org/wiki/Pointed_space

    The pointed set concept is less important; it is anyway the case of a pointed discrete space. Pointed spaces are often taken as a special case of the relative topology, where the subset is a single point. Thus, much of homotopy theory is usually developed on pointed spaces, and then moved to relative topologies in algebraic topology.