Ad
related to: maximum principle for parabolic equations pdf
Search results
Results From The WOW.Com Content Network
The maximum principle enables one to obtain information about solutions of differential equations without any explicit knowledge of the solutions themselves. In particular, the maximum principle is a useful tool in the numerical approximation of solutions of ordinary and partial differential equations and in the determination of bounds for the ...
In mathematics, and more precisely, in Functional analysis and PDEs, the Schauder estimates are a collection of results due to Juliusz Schauder (1934, 1937) concerning the regularity of solutions to linear, uniformly elliptic partial differential equations.
Generalizing the maximum principle for harmonic functions which was already known to Gauss in 1839, Eberhard Hopf proved in 1927 that if a function satisfies a second order partial differential inequality of a certain kind in a domain of R n and attains a maximum in the domain then the function is constant. The simple idea behind Hopf's proof ...
The lemma is an important tool in the proof of the maximum principle and in the theory of partial differential equations. The Hopf lemma has been generalized to describe the behavior of the solution to an elliptic problem as it approaches a point on the boundary where its maximum is attained.
In one of his earliest works, Nirenberg adapted Hopf's proof to second-order parabolic partial differential equations, thereby establishing the strong maximum principle in that context. As in the earlier work, such a result had various uniqueness and comparison theorems as corollaries. Nirenberg's work is now regarded as one of the foundations ...
The shallow-water equations in unidirectional form are also called (de) Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant (see the related section below). The equations are derived [ 2 ] from depth-integrating the Navier–Stokes equations , in the case where the horizontal length scale is much greater than the vertical ...
The curvature is taken to be positive if the curve turns in the same direction as the surface's chosen normal, and otherwise negative. The directions in the normal plane where the curvature takes its maximum and minimum values are always perpendicular, if k 1 does not equal k 2, a result of Euler (1760), and are called principal directions.
A solution to Laplace's equation defined on an annulus.The Laplace operator is the most famous example of an elliptic operator.. In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator.