Search results
Results From The WOW.Com Content Network
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
In electromagnetism, the magnetic susceptibility (from Latin susceptibilis 'receptive'; denoted χ, chi) is a measure of how much a material will become magnetized in an applied magnetic field. It is the ratio of magnetization M ( magnetic moment per unit volume ) to the applied magnetic field intensity H .
Magnets exert forces and torques on each other through the interaction of their magnetic fields.The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the mater
Closer to the magnet, the magnetic field becomes more complicated and more dependent on the detailed shape and magnetization of the magnet. Formally, the field can be expressed as a multipole expansion: A dipole field, plus a quadrupole field, plus an octupole field, etc. At close range, many different fields are possible.
Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism. The most familiar effects occur in ferromagnetic materials, which are strongly attracted by magnetic fields and can be magnetized to become permanent magnets, producing magnetic fields ...
The extent to which the magnetic moments are aligned with the field can be ... The magnetization is the negative derivative of the free energy with respect to the ...
Magnetic scalar potential of flat cylinder magnets encoded as color from positive (magenta) through zero (yellow) to negative (cyan). The scalar potential is a useful quantity in describing the magnetic field, especially for permanent magnets.
For passive magnetic levitation a relative permeability below 1 is needed (corresponding to a negative susceptibility). Permeability varies with a magnetic field. Values shown above are approximate and valid only at the magnetic fields shown. They are given for a zero frequency; in practice, the permeability is generally a function of the ...