When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    The roots of the quadratic function y = ⁠ 1 / 2x 2 − 3x + ⁠ 5 / 2 ⁠ are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  3. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    By the fundamental theorem of algebra, if the monic polynomial equation x 2 + bx + c = 0 has complex coefficients, it must have two (not necessarily distinct) complex roots. Unfortunately, the discriminant b 2 − 4c is not as useful in this situation, because it may be a complex number. Still, a modified version of the general theorem can be ...

  4. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    For the quadratic function y = x 2x2, the points where the graph crosses the x-axis, x = −1 and x = 2, are the solutions of the quadratic equation x 2x2 = 0. The process of completing the square makes use of the algebraic identity + + = (+), which represents a well-defined algorithm that can be used to solve any quadratic ...

  5. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    We are not taking the square root of any negative values here, since both and are necessarily positive. But we have lost the solution x = − 2. {\displaystyle x=-2.} The reason is that x {\displaystyle x} is actually not in general the positive square root of x 2 . {\displaystyle x^{2}.}

  6. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The tangent lines of x 3 − 2x + 2 at 0 and 1 intersect the x-axis at 1 and 0 respectively, illustrating why Newton's method oscillates between these values for some starting points. It is easy to find situations for which Newton's method oscillates endlessly between two distinct values.

  7. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    For example, taking the statement x + 1 = 0, if x is substituted with 1, this implies 1 + 1 = 2 = 0, which is false, which implies that if x + 1 = 0 then x cannot be 1. If x and y are integers, rationals, or real numbers, then xy = 0 implies x = 0 or y = 0. Consider abc = 0. Then, substituting a for x and bc for y, we learn a = 0 or bc = 0.

  8. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    In mathematics, a quadratic function of a single variable is a function of the form [1] = + +,,where ⁠ ⁠ is its variable, and ⁠ ⁠, ⁠ ⁠, and ⁠ ⁠ are coefficients.The expression ⁠ + + ⁠, especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.

  9. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 + 2x + 1. One of the important properties of squaring, for numbers as well as in many other mathematical systems, is that (for all numbers x), the square of x is the same as the square of its additive inverse −x.