Search results
Results From The WOW.Com Content Network
Convergence in distribution is the weakest form of convergence typically discussed, since it is implied by all other types of convergence mentioned in this article. However, convergence in distribution is very frequently used in practice; most often it arises from application of the central limit theorem .
The Cauchy convergence criterion states that a series ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} converges if and only if the sequence of partial sums is a Cauchy sequence .
A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).
Convergence implies "Cauchy convergence", and Cauchy convergence, together with the existence of a convergent subsequence implies convergence. The concept of completeness of metric spaces, and its generalizations is defined in terms of Cauchy sequences.
This definition is technically called Q-convergence, short for quotient-convergence, and the rates and orders are called rates and orders of Q-convergence when that technical specificity is needed. § R-convergence , below, is an appropriate alternative when this limit does not exist.
Technological convergence is the tendency for technologies that were originally unrelated to become more closely integrated and even unified as they develop and advance. For example, watches, telephones, television, computers, and social media platforms began as separate and mostly unrelated technologies, but have converged in many ways into an interrelated telecommunication, media, and ...
In particular, for series with values in any Banach space, absolute convergence implies convergence. The converse is also true: if absolute convergence implies convergence in a normed space, then the space is a Banach space. If a series is convergent but not absolutely convergent, it is called conditionally convergent.
In mathematics, computer science and logic, convergence is the idea that different sequences of transformations come to a conclusion in a finite amount of time ...