Search results
Results From The WOW.Com Content Network
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
The rotation curve of a disc galaxy (also called a velocity curve) is a plot of the orbital speeds of visible stars or gas in that galaxy versus their radial distance from that galaxy's centre. It is typically rendered graphically as a plot , and the data observed from each side of a spiral galaxy are generally asymmetric, so that data from ...
Radial velocity curve with peak radial velocity K=1 m/s and orbital period 2 years. The peak radial velocity is the semi-amplitude of the radial velocity curve, as shown in the figure. The orbital period is found from the periodicity in the radial velocity curve. These are the two observable quantities needed to calculate the binary mass function.
Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 [4])
The answer will be in meters per second. The quantity is often termed the standard gravitational parameter, which has a different value for every planet or moon in the Solar System. Once the circular orbital velocity is known, the escape velocity is easily found by multiplying by :
Figure 1: Geometry of the Oort constants derivation, with a field star close to the Sun in the midplane of the Galaxy. Consider a star in the midplane of the Galactic disk with Galactic longitude at a distance from the Sun. Assume that both the star and the Sun have circular orbits around the center of the Galaxy at radii of and from the Galactic Center and rotational velocities of and ...
The state of an orbiting body at any given time is defined by the orbiting body's position and velocity with respect to the central body, which can be represented by the three-dimensional Cartesian coordinates (position of the orbiting body represented by x, y, and z) and the similar Cartesian components of the orbiting body's velocity.
The speed (or the magnitude of velocity) relative to the centre of mass is constant: [1]: 30 = = where: , is the gravitational constant, is the mass of both orbiting bodies (+), although in common practice, if the greater mass is significantly larger, the lesser mass is often neglected, with minimal change in the result.