When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. pandas (software) - Wikipedia

    en.wikipedia.org/wiki/Pandas_(software)

    Subsets of data can be selected by column name, index, or Boolean expressions. For example, df[df['col1'] > 5] will return all rows in the DataFrame df for which the value of the column col1 exceeds 5. [4]: 126–128 Data can be grouped together by a column value, as in df['col1'].groupby(df['col2']), or by a function which is applied to the index.

  3. Wide and narrow data - Wikipedia

    en.wikipedia.org/wiki/Wide_and_narrow_data

    Many statistical and data processing systems have functions to convert between these two presentations, for instance the R programming language has several packages such as the tidyr package. The pandas package in Python implements this operation as "melt" function which converts a wide table to a narrow one. The process of converting a narrow ...

  4. dplyr - Wikipedia

    en.wikipedia.org/wiki/Dplyr

    dplyr is an R package whose set of functions are designed to enable dataframe (a spreadsheet-like data structure) manipulation in an intuitive, user-friendly way. It is one of the core packages of the popular tidyverse set of packages in the R programming language. [1]

  5. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [ note 1 ] while in R the desired effect can be achieved via the c() or as.vector() functions. In R , function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization.

  6. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix has dimension n-by-p, where n is the number of samples observed, and p is the number of variables measured in all samples. [4] [5]In this representation different rows typically represent different repetitions of an experiment, while columns represent different types of data (say, the results from particular probes).

  7. Array slicing - Wikipedia

    en.wikipedia.org/wiki/Array_slicing

    Reducing the range of any index to a single value effectively eliminates that index. This feature can be used, for example, to extract one-dimensional slices (vectors: in 3D, rows, columns, and tubes [1]) or two-dimensional slices (rectangular matrices) from a three-dimensional array. However, since the range can be specified at run-time, type ...

  8. Data binning - Wikipedia

    en.wikipedia.org/wiki/Data_binning

    Data binning, also called data discrete binning or data bucketing, is a data pre-processing technique used to reduce the effects of minor observation errors.The original data values which fall into a given small interval, a bin, are replaced by a value representative of that interval, often a central value (mean or median).

  9. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    Typically, the matrix is assumed to be stored in row-major or column-major order (i.e., contiguous rows or columns, respectively, arranged consecutively). Performing an in-place transpose (in-situ transpose) is most difficult when N ≠ M , i.e. for a non-square (rectangular) matrix, where it involves a complex permutation of the data elements ...