When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rosenbrock function - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_function

    Plot of the Rosenbrock function of two variables. Here a = 1 , b = 100 {\displaystyle a=1,b=100} , and the minimum value of zero is at ( 1 , 1 ) {\displaystyle (1,1)} . In mathematical optimization , the Rosenbrock function is a non- convex function , introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for ...

  3. File:Rosenbrock's function in 3D.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Rosenbrock's_function...

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  4. Rosenbrock methods - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_methods

    The idea of Rosenbrock search is also used to initialize some root-finding routines, such as fzero (based on Brent's method) in Matlab. Rosenbrock search is a form of derivative-free search but may perform better on functions with sharp ridges. [6] The method often identifies such a ridge which, in many applications, leads to a solution. [7]

  5. File:Rosenbrock roots exhibiting hump structures.pdf

    en.wikipedia.org/wiki/File:Rosenbrock_roots...

    It is recommended to name the SVG file “Rosenbrock roots exhibiting hump structures.svg”—then the template Vector version available (or Vva) does not need the new image name parameter. Summary Description Rosenbrock roots exhibiting hump structures.pdf

  6. Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Test_functions_for...

    In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as convergence rate, precision, robustness and general performance.

  7. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.

  8. Rosenbrock system matrix - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_system_matrix

    An interpretation of the Rosenbrock System Matrix as a Linear Fractional Transformation can be found in. [4] One of the first applications of the Rosenbrock form was the development of an efficient computational method for Kalman decomposition , which is based on the pivot element method.

  9. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems.