Search results
Results From The WOW.Com Content Network
Echolocation, also called bio sonar, is a biological active sonar used by several animal groups, both in the air and underwater. Echolocating animals emit calls and listen to the echoes of those calls that return from various objects near them. They use these echoes to locate and identify the objects.
Bioacoustics is a cross-disciplinary science that combines biology and acoustics. Usually it refers to the investigation of sound production, dispersion and reception in animals (including humans). [1] This involves neurophysiological and anatomical basis of sound production and detection, and relation of acoustic signals to the medium they ...
Insects and birds are able to combine learned landmarks with sensed direction (from the Earth's magnetic field or from the sky) to identify where they are and so to navigate. Internal 'maps' are often formed using vision, but other senses including olfaction and echolocation may also be used.
Animal echolocation, non-human animals emitting sound waves and listening to the echo in order to locate objects or navigate. Human echolocation , the use of sound by people to navigate. Sonar ( so und n avigation a nd r anging), the use of sound on water or underwater, to navigate or to locate other watercraft, usually by submarines.
The World Forum for Acoustic Ecology is an international collective of people and organizations who study the world's soundscapes. [6] There are eight groups that make up the World Forum for Acoustic Ecology: the Australian Forum for Acoustic Ecology, the Canadian Association for Acoustic Ecology, the Finnish Society for Acoustic Ecology, the Hellenic Society for Acoustic Ecology, the Japanese ...
Swedish soldiers operating an acoustic locator in 1940. Acoustic location is a method of determining the position of an object or sound source by using sound waves. Location can take place in gases (such as the atmosphere), liquids (such as water), and in solids (such as in the earth).
Echolocation involves emitting sounds and interpreting the vibrations that return from objects. [71] In bats, echolocation also serves the purpose of mapping their environment. They are capable of recognizing a space they have been in before without any visible light because they can memorize patterns in the feedback they get from echolocation.
Human echolocation is the ability of humans to detect objects in their environment by sensing echoes from those objects, by actively creating sounds: for example, by tapping their canes, lightly stomping their foot, snapping their fingers, or making clicking noises with their mouths.