When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acetyl-CoA - Wikipedia

    en.wikipedia.org/wiki/Acetyl-CoA

    In addition, acetyl-CoA is a precursor for the biosynthesis of various acetyl-chemicals, acting as an intermediate to transfer an acetyl group during the biosynthesis of those acetyl-chemicals. Acetyl-CoA is also involved in the regulation of various cellular mechanisms by providing acetyl groups to target amino acid residues for post ...

  3. Beta oxidation - Wikipedia

    en.wikipedia.org/wiki/Beta_oxidation

    Chains with an odd-number of carbons are oxidized in the same manner as even-numbered chains, but the final products are propionyl-CoA and acetyl-CoA. Propionyl-CoA is first carboxylated using a bicarbonate ion into a D-stereoisomer of methylmalonyl-CoA. This reaction involves a biotin co-factor, ATP and the enzyme propionyl-CoA carboxylase. [6]

  4. Acetyl-CoA synthetase - Wikipedia

    en.wikipedia.org/wiki/Acetyl-CoA_synthetase

    ATP + Acetate + CoA → AMP + Pyrophosphate + Acetyl-CoA [1] Once acetyl-CoA is formed it can be used in the TCA cycle in aerobic respiration to produce energy and electron carriers. This is an alternate method to starting the cycle, as the more common way is producing acetyl-CoA from pyruvate through the pyruvate dehydrogenase complex.

  5. Citric acid cycle - Wikipedia

    en.wikipedia.org/wiki/Citric_acid_cycle

    The reactions of the cycle are carried out by eight enzymes that completely oxidize acetate (a two carbon molecule), in the form of acetyl-CoA, into two molecules each of carbon dioxide and water. Through catabolism of sugars, fats, and proteins, the two-carbon organic product acetyl-CoA is produced which enters the citric acid cycle.

  6. Coenzyme A - Wikipedia

    en.wikipedia.org/wiki/Coenzyme_A

    Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle.All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate.

  7. Fatty acid synthesis - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_synthesis

    The two pathways are distinct, not only in where they occur, but also in the reactions that occur, and the substrates that are used. The two pathways are mutually inhibitory, preventing the acetyl-CoA produced by beta-oxidation from entering the synthetic pathway via the acetyl-CoA carboxylase reaction. [12]

  8. Acetoacetyl-CoA - Wikipedia

    en.wikipedia.org/wiki/Acetoacetyl-CoA

    It is created from acetyl-CoA, a thioester, which reacts with the enolate of a second molecule of acetyl-CoA in a Claisen condensation reaction, [2] and it is acted upon by HMG-CoA synthase to form HMG-CoA. [1] During the metabolism of leucine, this last reaction is reversed. Some individuals may experience Acetoacetyl-CoA deficiency. [3]

  9. Acyl-CoA - Wikipedia

    en.wikipedia.org/wiki/Acyl-CoA

    General chemical structure of an acyl-CoA, where R is a carboxylic acid side chain. Acyl-CoA is a group of CoA-based coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this ...