When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Laurent series - Wikipedia

    en.wikipedia.org/wiki/Laurent_series

    e −1/x 2 and its Laurent approximations (labeled) with the negative degree rising. The neighborhood around the zero singularity can never be approximated. e −1/x 2 and its Laurent approximations. As the negative degree of the Laurent series rises, it approaches the correct function.

  3. Principal part - Wikipedia

    en.wikipedia.org/wiki/Principal_part

    The principal part at = of a function = = ()is the portion of the Laurent series consisting of terms with negative degree. [1] That is, = is the principal part of at .If the Laurent series has an inner radius of convergence of , then () has an essential singularity at if and only if the principal part is an infinite sum.

  4. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Its zeros in the left halfplane are all the negative even integers, and the Riemann hypothesis is the conjecture that all other zeros are along Re(z) = 1/2. In a neighbourhood of a point , a nonzero meromorphic function f is the sum of a Laurent series with at most finite principal part (the terms with negative index values):

  5. Painlevé transcendents - Wikipedia

    en.wikipedia.org/wiki/Painlevé_transcendents

    The point 1 for type VI, and; Possibly some movable poles; For type I, the singularities are (movable) double poles of residue 0, and the solutions all have an infinite number of such poles in the complex plane. The functions with a double pole at have the Laurent series expansion

  6. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  7. Laurent polynomial - Wikipedia

    en.wikipedia.org/wiki/Laurent_polynomial

    A Laurent polynomial over may be viewed as a Laurent series in which only finitely many coefficients are non-zero. The ring of Laurent polynomials R [ X , X − 1 ] {\displaystyle R\left[X,X^{-1}\right]} is an extension of the polynomial ring R [ X ] {\displaystyle R[X]} obtained by "inverting X {\displaystyle X} ".

  8. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    Suppose a punctured disk D = {z : 0 < |z − c| < R} in the complex plane is given and f is a holomorphic function defined (at least) on D. The residue Res(f, c) of f at c is the coefficient a −1 of (z − c) −1 in the Laurent series expansion of f around c. Various methods exist for calculating this value, and the choice of which method to ...

  9. Residue (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Residue_(complex_analysis)

    Suppose a punctured disk D = {z : 0 < |z − c| < R} in the complex plane is given and f is a holomorphic function defined (at least) on D. The residue Res(f, c) of f at c is the coefficient a −1 of (z − c) −1 in the Laurent series expansion of f around c. Various methods exist for calculating this value, and the choice of which method to ...