Ad
related to: the hk theorem practice model
Search results
Results From The WOW.Com Content Network
The second HK theorem defines an energy functional for the system and proves that the ground-state electron density minimizes this energy functional. In work that later won them the Nobel prize in chemistry , the HK theorem was further developed by Walter Kohn and Lu Jeu Sham to produce Kohn–Sham DFT (KS DFT).
The formal foundation of TDDFT is the Runge–Gross (RG) theorem (1984) [1] – the time-dependent analogue of the Hohenberg–Kohn (HK) theorem (1964). [2] The RG theorem shows that, for a given initial wavefunction, there is a unique mapping between the time-dependent external potential of a system and its time-dependent density.
For typical three-dimensional metals, the temperature-dependence of the electrical resistivity ρ(T) due to the scattering of electrons by acoustic phonons changes from a high-temperature regime in which ρ ∝ T to a low-temperature regime in which ρ ∝ T 5 at a characteristic temperature known as the Debye temperature.
In the interpretation of quantum mechanics, a local hidden-variable theory is a hidden-variable theory that satisfies the principle of locality.These models attempt to account for the probabilistic features of quantum mechanics via the mechanism of underlying, but inaccessible variables, with the additional requirement that distant events be statistically independent.
The model can not be used to derive quantum mechanics, as there are fundamental differences between the model and quantum theory. In particular, the model is one of local and noncontextual variables, which Bell's theorem tells us cannot ever reproduce all the predictions of quantum mechanics. The toy model does, however, reproduce a number of ...
With the Hardy–Littlewood maximal inequality in hand, the following strong-type estimate is an immediate consequence of the Marcinkiewicz interpolation theorem: Theorem (Strong Type Estimate). For d ≥ 1, 1 < p ≤ ∞, and f ∈ L p (R d), there is a constant C p,d > 0 such that
The terms Bayard–Bode relations and Bayard–Bode theorem, after the works of Marcel Bayard (1936) and Hendrik Wade Bode (1945) are also used for either the Kramers–Kronig relations in general or the amplitude–phase relation in particular, particularly in the fields of telecommunication and control theory.
In mathematics, especially in the area of algebra known as group theory, a complement of a subgroup H in a group G is a subgroup K of G such that = = {:,} = {}. Equivalently, every element of G has a unique expression as a product hk where h ∈ H and k ∈ K.