Search results
Results From The WOW.Com Content Network
Under ideal conditions the reaction produces 50% of both the alcohol and the carboxylic acid (it takes two aldehydes to produce one acid and one alcohol). [5] This can be economically viable if the products can be separated and both have a value; the commercial conversion of furfural into furfuryl alcohol and 2-furoic acid is an example of this ...
In the context of butanol fuel, isobutyraldehyde is of interest as a precursor to isobutanol. E. coli as well as several other organisms has been genetically modified to produce isobutanol. α-Ketoisovalerate, derived from oxidative deamination of valine, is prone to decarboxylation to give isobutyraldehyde, which is susceptible to reduction to the alcohol: [3]
Stanislao Cannizzaro FRS (/ ˌ k æ n ɪ ˈ z ɑːr oʊ / KAN-iz-AR-oh, [1] also US: /-ɪ t ˈ s ɑːr-/-it-SAR-, [2] Italian: [staniˈzlaːo kannitˈtsaːro]; 13 July 1826 – 10 May 1910) was an Italian chemist. He is famous for the Cannizzaro reaction and for his influential role in the atomic-weight deliberations of the Karlsruhe ...
Aqueous formaldehyde, unlike some other small aldehydes (which need specific conditions to oligomerize through aldol condensation) oligomerizes spontaneously at a common state. The trimer 1,3,5-trioxane, (CH 2 O) 3, is a typical oligomer. Many cyclic oligomers of other sizes have been isolated.
The formose reaction is of importance to the question of the origin of life, as it leads from simple formaldehyde to complex sugars like ribose, a building block of RNA.In one experiment simulating early Earth conditions, pentoses formed from mixtures of formaldehyde, glyceraldehyde, and borate minerals such as colemanite (Ca 2 B 6 O 11 5H 2 O) or kernite (Na 2 B 4 O 7). [6]
The reaction is named after Russian organic chemist Vyacheslav Tishchenko, who discovered that aluminium alkoxides are effective catalysts for the reaction. [1] [2] [3] In the related Cannizzaro reaction, the base is sodium hydroxide and then the oxidation product is a carboxylic acid and the reduction product is an alcohol.
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group.
An example of the Hell–Volhard–Zelinsky reaction can be seen in the preparation of alanine from propionic acid.In the first step, a combination of bromine and phosphorus tribromide is used in the Hell–Volhard–Zelinsky reaction to prepare 2-bromopropionic acid, [3] which in the second step is converted to a racemic mixture of the amino acid product by ammonolysis.