Ads
related to: vector based geometric transformations worksheet free answer booklet 1
Search results
Results From The WOW.Com Content Network
Homogeneous coordinates are ubiquitous in computer graphics because they allow common vector operations such as translation, rotation, scaling and perspective projection to be represented as a matrix by which the vector is multiplied. By the chain rule, any sequence of such operations can be multiplied out into a single matrix, allowing simple ...
A vector's components change scale inversely to changes in scale to the reference axes, and consequently a vector is called a contravariant tensor. A vector, which is an example of a contravariant tensor, has components that transform inversely to the transformation of the reference axes, (with example transformations including rotation and ...
Geometric algebra (GA) is an extension or completion of vector algebra (VA). [1] The reader is herein assumed to be familiar with the basic concepts and operations of VA and this article will mainly concern itself with operations in the GA of 3D space (nor is this article intended to be mathematically rigorous). In GA, vectors are not normally ...
In mathematics, a geometric algebra (also known as a Clifford algebra) is an algebra that can represent and manipulate geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors ...
Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a fixed frame of reference or coordinate system (alibi meaning "being somewhere else at the same time"); and passive or alias transformations which leave points fixed but change the ...
Although a vector manifold can be treated as a completely abstract object, a geometric algebra is created so that every element of the algebra represents a geometric object and algebraic operations such as adding and multiplying correspond to geometric transformations. Consider a set of vectors {x} = M n in UGA.
While geometric translation is often viewed as an active transformation that changes the position of a geometric object, a similar result can be achieved by a passive transformation that moves the coordinate system itself but leaves the object fixed. The passive version of an active geometric translation is known as a translation of axes.
Plane-based geometric algebra takes planar reflections as basic elements, and constructs all other transformations and geometric objects out of them. Formally: it identifies planar reflections with the grade-1 elements of a Clifford Algebra, that is, elements that are written with a single subscript such as " e 1 {\displaystyle {\boldsymbol {e ...