Search results
Results From The WOW.Com Content Network
2-Chlorobutane, along with other alkyl halides, is a useful intermediate in many different organic reactions. The halogen group is an effective leaving group, leading to its use in both elimination and substitution reactions. In addition, the compound is also a candidate for coupling reactions via a Grignard reagent.
Both compounds share the molecular formula C 4 H 9 Br. 2-Bromobutane is also known as sec-butyl bromide or methylethylbromomethane. Because it contains bromine, a halogen, it is part of a larger class of compounds known as alkyl halides. It is a colorless liquid with a pleasant odor.
Haloalkane or alkyl halides are the compounds which have the general formula "RX" where R is an alkyl or substituted alkyl group and X is a halogen (F, Cl, Br, I). Haloalkanes have been known for centuries. Chloroethane was produced in the 15th century. The systematic synthesis of such compounds developed in the 19th century in step with the ...
In organic chemistry, an alkyl group is an alkane missing one hydrogen. [1] The term alkyl is intentionally unspecific to include many possible substitutions. An acyclic alkyl has the general formula of −C n H 2n+1. A cycloalkyl group is derived from a cycloalkane by removal of a hydrogen atom from a ring and has the general formula −C n H ...
Secondary is a term used in organic chemistry to classify various types of compounds (e. g. alcohols, alkyl halides, amines) or reactive intermediates (e. g. alkyl radicals, carbocations). An atom is considered secondary if it has two 'R' Groups attached to it. [1] An 'R' group is a carbon containing group such as a methyl (CH 3).
Primary alkyl halides react with aqueous NaOH or KOH to give alcohols in nucleophilic aliphatic substitution. Secondary and especially tertiary alkyl halides will give the elimination (alkene) product instead. Grignard reagents react with carbonyl groups to give secondary and tertiary alcohols.
Secondary halides are far less reactive. Vinyl , aryl and tertiary alkyl halides are unreactive; as a result, the reaction of NaI in acetone can be used as a qualitative test to determine which of the aforementioned classes an unknown alkyl halide belongs to, with the exception of alkyl iodides, as they yield the same product upon substitution.
E1 typically takes place with tertiary alkyl halides, but is possible with some secondary alkyl halides. The reaction rate is influenced only by the concentration of the alkyl halide because carbocation formation is the slowest step, as known as the rate-determining step. Therefore, first-order kinetics apply (unimolecular).