Search results
Results From The WOW.Com Content Network
Stiffness is the extent to which an object resists deformation in response to an applied force. [ 1 ] The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is.
Approximate specific stiffness for various materials. No attempt is made to correct for materials whose stiffness varies with their density. Material Young's modulus Density (g/cm 3) Young's modulus per density; specific stiffness (10 6 m 2 s −2) Young's modulus per density squared (10 3 m 5 kg −1 s −2) Young's modulus per density cubed ...
Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression.. Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise.
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
The bending stiffness is the resistance of a member against bending deflection/deformation. It is a function of the Young's modulus E {\displaystyle E} , the second moment of area I {\displaystyle I} of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.
The flexural rigidity (stiffness) of the beam is therefore related to both , a material property, and , the physical geometry of the beam. If the material exhibits Isotropic behavior then the Flexural Modulus is equal to the Modulus of Elasticity (Young's Modulus).
Backward differentiation formula, a family of implicit methods especially used for the solution of stiff differential equations; Condition number; Differential inclusion, an extension of the notion of differential equation that allows discontinuities, in part as way to sidestep some stiffness issues; Explicit and implicit methods
Non-circular cross-sections always have warping deformations that require numerical methods to allow for the exact calculation of the torsion constant. [2] The torsional stiffness of beams with non-circular cross sections is significantly increased if the warping of the end sections is restrained by, for example, stiff end blocks. [3]