Search results
Results From The WOW.Com Content Network
The vectors z 1 and z 2 in the complex number plane, and w 1 and w 2 in the hyperbolic number plane are said to be respectively Euclidean orthogonal or hyperbolic orthogonal if their respective inner products [bilinear forms] are zero. [3] The bilinear form may be computed as the real part of the complex product of one number with the conjugate ...
Therefore, in hyperbolic geometry the ratio of a circle's circumference to its radius is always strictly greater than , though it can be made arbitrarily close by selecting a small enough circle. If the Gaussian curvature of the plane is −1 then the geodesic curvature of a circle of radius r is: 1 tanh ( r ) {\displaystyle {\frac {1 ...
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t , sin t ) form a circle with a unit radius , the points (cosh t , sinh t ) form the right half of the unit hyperbola .
In geometry, two circles are said to be orthogonal if their respective tangent lines at the points of intersection are perpendicular (meet at a right angle). A straight line through a circle's center is orthogonal to it, and if straight lines are also considered as a kind of generalized circles , for instance in inversive geometry , then an ...
The unit hyperbola finds applications where the circle must be replaced with the hyperbola for purposes of analytic geometry. A prominent instance is the depiction of spacetime as a pseudo-Euclidean space. There the asymptotes of the unit hyperbola form a light cone.
In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used. This article tries to give an overview of several coordinate systems in use for the two-dimensional hyperbolic plane.
A Poincaré disk showing the hypercycle HC that is determined by the straight line L (termed straight because it cuts the horizon at right angles) and point P. In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line (its axis).
Just as the trigonometric functions are defined in terms of the unit circle, so also the hyperbolic functions are defined in terms of the unit hyperbola, as shown in this diagram. In a unit circle, the angle (in radians) is equal to twice the area of the circular sector which that angle subtends.