Search results
Results From The WOW.Com Content Network
17 indivisible camels. The 17-animal inheritance puzzle is a mathematical puzzle involving unequal but fair allocation of indivisible goods, usually stated in terms of inheritance of a number of large animals (17 camels, 17 horses, 17 elephants, etc.) which must be divided in some stated proportion among a number of beneficiaries.
M = 15 The 15 perfect matchings of K 6 15 as the difference of two positive squares (in orange).. 15 is: The eighth composite number and the sixth semiprime and the first odd and fourth discrete semiprime; [1] its proper divisors are 1, 3, and 5, so the first of the form (3.q), [2] where q is a higher prime.
[2] [3] For the 15 puzzle, lengths of optimal solutions range from 0 to 80 single-tile moves (there are 17 configurations requiring 80 moves) [4] [5] or 43 multi-tile moves; [6] the 8 Puzzle always can be solved in no more than 31 single-tile moves or 24 multi-tile moves (integer sequence A087725). The multi-tile metric counts subsequent moves ...
17 is a Leyland number [3] and Leyland prime, [4] using 2 & 3 (2 3 + 3 2) and using 4 and 5, [5] [6] using 3 & 4 (3 4 - 4 3). 17 is a Fermat prime. 17 is one of six lucky numbers of Euler. [7] Since seventeen is a Fermat prime, regular heptadecagons can be constructed with a compass and unmarked ruler.
Of the cleanly formulated Hilbert problems, numbers 3, 7, 10, 14, 17, 18, 19, 21, and 20 have resolutions that are accepted by consensus of the mathematical community. Problems 1, 2, 5, 6, [ a ] 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems.
The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the ...
Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of. For example, +. 2. With an integer greater than 2 as a left superscript, denotes an n th root.
In mathematics, the 15 theorem or Conway–Schneeberger Fifteen Theorem, proved by John H. Conway and W. A. Schneeberger in 1993, states that if a positive definite quadratic form with integer matrix represents all positive integers up to 15, then it represents all positive integers. [1] The proof was complicated, and was never published.