When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    Attention module – this can be a dot product of recurrent states, or the query-key-value fully-connected layers. The output is a 100-long vector w. H 500×100. 100 hidden vectors h concatenated into a matrix c 500-long context vector = H * w. c is a linear combination of h vectors weighted by w.

  3. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  4. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    Image and video generators like DALL-E (2021), Stable Diffusion 3 (2024), [44] and Sora (2024), use Transformers to analyse input data (like text prompts) by breaking it down into "tokens" and then calculating the relevance between each token using self-attention, which helps the model understand the context and relationships within the data.

  5. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Yahoo! Front Page Today Module User Click Log User click log for news articles displayed in the Featured Tab of the Today Module on Yahoo! Front Page. Conjoint analysis with a bilinear model. 45,811,883 user visits Text Regression, clustering 2009 [473] [474] Chu et al. British Oceanographic Data Centre

  6. PyTorch Lightning - Wikipedia

    en.wikipedia.org/wiki/PyTorch_Lightning

    PyTorch Lightning is an open-source Python library that provides a high-level interface for PyTorch, a popular deep learning framework. [1] It is a lightweight and high-performance framework that organizes PyTorch code to decouple research from engineering, thus making deep learning experiments easier to read and reproduce.

  7. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Encoder-decoder RNN with attention mechanism. Two RNNs can be run front-to-back in an encoder-decoder configuration. The encoder RNN processes an input sequence into a sequence of hidden vectors, and the decoder RNN processes the sequence of hidden vectors to an output sequence, with an optional attention mechanism.

  8. Visual temporal attention - Wikipedia

    en.wikipedia.org/wiki/Visual_temporal_attention

    Visual temporal attention is a special case of visual attention that involves directing attention to specific instant of time. Similar to its spatial counterpart visual spatial attention , these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable ...

  9. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    TensorFlow and PyTorch, by far the most popular machine learning libraries, [20] as of 2023 largely only include Adam-derived optimizers, as well as predecessors to Adam such as RMSprop and classic SGD. PyTorch also partially supports Limited-memory BFGS, a line-search method, but only for single-device setups without parameter groups. [19] [21]