When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. [ 1 ]

  3. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    It was the first implementation of an Artificial Intelligence (AI) machine. It differs from the Perceptron which is a software architecture proposed in 1943 by Warren McCulloch and Walter Pitts, [1] which was also employed in Mark I, and enhancements of which have continued to be an integral part of cutting edge AI technologies like the ...

  4. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    The perceptron uses the Heaviside step function as the activation function (), and that means that ′ does not exist at zero, and is equal to zero elsewhere, which makes the direct application of the delta rule impossible.

  5. Symbolic artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Symbolic_artificial...

    More formally, Valiant introduced Probably Approximately Correct Learning (PAC Learning), a framework for the mathematical analysis of machine learning. [63] Symbolic machine learning encompassed more than learning by example. E.g., John Anderson provided a cognitive model of human learning where skill practice results in a compilation of rules ...

  6. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]

  7. Kernel perceptron - Wikipedia

    en.wikipedia.org/wiki/Kernel_perceptron

    The perceptron algorithm is an online learning algorithm that operates by a principle called "error-driven learning". It iteratively improves a model by running it on training samples, then updating the model whenever it finds it has made an incorrect classification with respect to a supervised signal.

  8. Empirical risk minimization - Wikipedia

    en.wikipedia.org/wiki/Empirical_risk_minimization

    Empirical risk minimization for a classification problem with a 0-1 loss function is known to be an NP-hard problem even for a relatively simple class of functions such as linear classifiers. [5] Nevertheless, it can be solved efficiently when the minimal empirical risk is zero, i.e., data is linearly separable .

  9. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...