Search results
Results From The WOW.Com Content Network
In thermodynamics, vapor quality is the mass fraction in a saturated mixture that is vapor; [1] in other words, saturated vapor has a "quality" of 100%, and saturated liquid has a "quality" of 0%. Vapor quality is an intensive property which can be used in conjunction with other independent intensive properties to specify the thermodynamic ...
Vapor quality refers to the vapor–liquid mixture that is contained underneath the dome. This quality is defined as the fraction of the total mixture which is vapor, based on mass. [3] A fully saturated vapor has a quality of 100% while a saturated liquid has a quality of 0%.
The vapor-liquid equilibrium line (the curved line from (0,0) to (1,1) in Figure 1) represents the vapor phase composition for a given liquid phase composition at equilibrium. Vertical lines drawn from the horizontal axis up to the x = y line indicate the composition of the inlet feed stream, the composition of the top (distillate) product ...
The commonly known phases solid, liquid and vapor are separated by phase boundaries, i.e. pressure–temperature combinations where two phases can coexist. At the triple point, all three phases can coexist. However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the ...
Experiments show that if the volume of a vessel containing a fixed amount of liquid is heated and expands at constant temperature, at a certain pressure, (), vapor, (denoted by dots at points and in Fig. 1) bubbles nucleate so the fluid is no longer homogeneous, but rather it has become a heterogeneous mixture of boiling liquid and condensing ...
Volatility can also describe the tendency of a vapor to condense into a liquid or solid; less volatile substances will more readily condense from a vapor than highly volatile ones. [1] Differences in volatility can be observed by comparing how fast substances within a group evaporate (or sublimate in the case of solids) when exposed to the ...
When a temperature is reached such that the sum of the equilibrium vapor pressures of the liquid components becomes equal to the total pressure of the system (it is otherwise smaller), then vapor bubbles generated from the liquid begin to displace the gas that was maintaining the overall pressure, and the mixture is said to boil.
Superheated steam can therefore cool (lose internal energy) by some amount, resulting in a lowering of its temperature without changing state (i.e., condensing) from a gas to a mixture of saturated vapor and liquid. If unsaturated steam (a mixture which contains both water vapor and liquid water droplets) is heated at constant pressure, its ...