When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    In machine learning, we can handle various types of data, e.g. audio signals and pixel values for image data, and this data can include multiple dimensions. Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance.

  3. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    Scale-space extrema detection produces too many keypoint candidates, some of which are unstable. The next step in the algorithm is to perform a detailed fit to the nearby data for accurate location, scale, and ratio of principal curvatures. This information allows the rejection of points which are low contrast (and are therefore sensitive to ...

  4. Scale space implementation - Wikipedia

    en.wikipedia.org/wiki/Scale_space_implementation

    A special type of scale-space representation is provided by the Gaussian scale space, where the image data in N dimensions is subjected to smoothing by Gaussian convolution. Most of the theory for Gaussian scale space deals with continuous images, whereas one when implementing this theory will have to face the fact that most measurement data ...

  5. Image scaling - Wikipedia

    en.wikipedia.org/wiki/Image_scaling

    Image scaling can be interpreted as a form of image resampling or image reconstruction from the view of the Nyquist sampling theorem.According to the theorem, downsampling to a smaller image from a higher-resolution original can only be carried out after applying a suitable 2D anti-aliasing filter to prevent aliasing artifacts.

  6. Physics-informed neural networks - Wikipedia

    en.wikipedia.org/wiki/Physics-informed_neural...

    Physics-informed neural networks for solving Navier–Stokes equations. Physics-informed neural networks (PINNs), [1] also referred to as Theory-Trained Neural Networks (TTNs), [2] are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).

  7. Harris corner detector - Wikipedia

    en.wikipedia.org/wiki/Harris_corner_detector

    The Harris corner detector is a corner detection operator that is commonly used in computer vision algorithms to extract corners and infer features of an image. It was first introduced by Chris Harris and Mike Stephens in 1988 upon the improvement of Moravec's corner detector. [1]

  8. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    To enable handling long data sequences, Mamba incorporates the Structured State Space sequence model (S4). [2] S4 can effectively and efficiently model long dependencies by combining continuous-time, recurrent, and convolutional models. These enable it to handle irregularly sampled data, unbounded context, and remain computationally efficient ...

  9. Winsorizing - Wikipedia

    en.wikipedia.org/wiki/Winsorizing

    For instance, the 10% trimmed mean is the average of the 5th to 95th percentile of the data, while the 90% winsorized mean sets the bottom 5% to the 5th percentile, the top 5% to the 95th percentile, and then averages the data. Winsorizing thus does not change the total number of values in the data set, N.