When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

  3. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Ultimate strength is an attribute related to a material, rather than just a specific specimen made of the material, and as such it is quoted as the force per unit of cross section area (N/m 2). The ultimate strength is the maximum stress that a material can withstand before it breaks or weakens. [12]

  4. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  5. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    This region starts as the stress goes beyond the yielding point, reaching a maximum at the ultimate strength point, which is the maximal stress that can be sustained and is called the ultimate tensile strength (UTS). In this region, the stress mainly increases as the material elongates, except that for some materials such as steel, there is a ...

  6. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    The ratio of the ultimate strength of the material to the allowable stress is defined as the factor of safety against ultimate failure. Laboratory tests are usually performed on material samples in order to determine the yield and ultimate strengths of those materials.

  7. Mechanical properties of biomaterials - Wikipedia

    en.wikipedia.org/wiki/Mechanical_properties_of...

    The strength of a material is defined as the maximum stress that can be endured before fracture occurs. Strength of biomaterials (bioceramics) is an important mechanical property because they are brittle. In brittle materials like bioceramics, cracks easily propagate when the material is subject to tensile loading, unlike compressive loading.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Properties of concrete - Wikipedia

    en.wikipedia.org/wiki/Properties_of_concrete

    The ultimate strength of concrete is influenced by the water-cementitious ratio (w/cm), the design constituents, and the mixing, placement and curing methods employed.All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than that with a higher ratio. [2]